研究業績

原著論文

  1. Nakagawa, T., Abe, H., Gessei, T., Takeda, K., Igarashi, K., Nakamura, N., Biorefinery of galacturonic acid using a biofuel cell as a reactor, Reaction Chemistry & Engineering, 7: 2629-2635 (2022)
  2. Uchiyama, T., Uchihashi, T., Ishida, T., Nakamura, A., Vermaas, J. V., Crowley, M. F., Samejima, M., Beckham, G. T., & Igarashi, K. (2022). ‘Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface.’, Science advances, 8(51), eade5155. https://www.science.org/doi/10.1126/sciadv.ade5155
  3. Kojima, K., Sunagawa, N., Yoshimi, Y., et al. ‘Acetylated xylan degradation by glycoside hydrolase family 10 and 11 xylanases from the white-rot fungus Phanerochaete chrysosporium‘, J. Appl. Glycosci. 69(2): 35-43 (2022)
  4. Kuga, T., Sunagawa, N., and Igarashi, K. ‘Enzymatic synthesis of cellulose in space: gravity is a crucial factor for building cellulose II gel structure’ Cellulose 29(5), 2999–3015 (2022) https://doi.org/10.1007/s10570-021-04399-0
  5. Kojima, K., Sunagawa, N., Mikkelsen, et al. ‘Comparison of glycoside hydrolase family 3 β-xylosidases from basidiomycetes and ascomycetes reveals evolutionarily distinct xylan degradation systems’ J. Biol. Chem. 298(3), (2022)101670. https://doi.org/10.1016/j.jbc.2022.101670
  6. Okmane, L., Nestor, G., Jakobsson, et al. ‘Glucomannan and beta-glucan degradation by Mytilus edulis Cel45A: Crystal structure and activity comparison with GH45 subfamily A, B and C’ Carbohydrate polymers, 277, 118771.(2022) https://doi.org/10.1016/j.carbpol.2021.118771
  7. Katsuhara, S., Takagi, Y., Sunagawa, N.,et al. ‘Enhanced self-assembly and mechanical properties of cellulose-based triblock copolymers: comparisons with amylose-based triblock copolymers’ ACS Sustain. Chem. Eng. 9(29) 9779-9788 (2021) DOI: 10.1021/acssuschemeng.1c02180
  8. Nakamura, A., Kanazawa, T. Furuta, T., et al. ‘Role of tryptophan 38 in loading substrate chain into the active-site tunnel of cellobiohydrolase I from Trichoderma reeseiJ. Appl. Glycosci. 68(1): 19-29 (2021) 
  9. Takeda, K., Kusuoka, R., Inukai, M.,et al. ‘An amperometric biosensor of L-fucose in urine for the first screening test of cancer’ Biosens. Bioelectron. 174: 112831 (2021)
  10. Yamaguchi, S., Sunagawa, N., Matsuyama, K., et al. ‘Preparation of large-volume crystal of cellulase under microgravity to investigate the mechanism of thermal stabilization’ Int. J. Micrograv. Sci. Appl. 38(1): (2021)
  11. Kohno, M., Arakawa, T., Sunagawa, N., et al. ‘Molecular analysis of cyclic α-maltosyl-(1→6)-maltose binding protein in the bacterial metabolic pathway’ PLoS One 15(11): e0241912 (2020)
  12. Matsuyama, K., Kishine, N., Fujimoto, Z., et al. ‘Unique active site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporiumJ. Biol. Chem. 295(52): 18539-18552 (2020)
  13. Pylkkänen, R., Mohammadi, P., Arola, S., et al. ‘In vitro synthesis and self-assembly of cellulose II nanofibrils catalyzed by the reverse reaction of Clostridium thermocellum cellodextrin phosphorylase’ Biomacromolecules 21(10): 4355-4364 (2020)
  14. Nakamura, A., Ishiwata, D., Visootsat, A., et al. ‘Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases’ J. Biol. Chem. 295(43): 14606-14617 (2020)
  15. Takeda, K., Kusuoka, R., Birrell, J. A., et al. ‘Bioelectrocatalysis based on direct electron transfer of fungal pyrroloquinoline quinone-dependent dehydrogenase lacking the cytochrome domain’ Electrochim. Acta 359: 136982 (2020)
  16. Matsuyama, K., Kondo, T., Igarashi, K., et al. ‘Analysis of substrate-recognition mechanism of tomato β-galactosidase 4 using X-ray crystallography and docking simulation’ Planta 252(4): 72 (2020)
  17. Uchiyama, T., Uchihashi, T., Nakamura, A., et al. ‘Convergent evolution of processivity in bacterial and fungal cellulases’ Proc. Nat. Acad. Sci. U.S.A. 117 (33) 19896-19903 (2020)
  18. Matsuyama, K., Sunagawa, N., and Igarashi, K., ‘Mutation of cysteine residues increases heterologous expression of peach expansin in the methylotrophic yeast Pichia pastorisPlant Biotechnol. 37(4): 397-403 (2020)
  19. Yamaguchi, S., Sunagawa, N., Tachioka, M., et al. ‘Thermostable mutants of glycoside hydrolase family 6 cellobiohydrolase from the basidiomycete Phanerochaete chrysosporiumJ. Appl. Glycosci. 67: 79-86 (2020)
  20. Fujii, T., Igarashi, K., and Samejima, M., ‘Single amino Acid mutation of pyranose 2-oxidase results in increased specificity for diabetes biomarker 1,5-anhydro-D-glucitol’ J. Appl. Glycosci. 67: 73-78 (2020)
  21. Miyake, M., Terada, T., Shimokawa, M., et al. ‘Structural analysis of β-L-arabinobiose-binding protein in the metabolic pathway of hydroxyproline-rich glycoproteins in Bifidobacterium longumFEBS J. doi: 10.1111/febs.15315 (2020)
  22. Igarashi, K., Kaneko, S., Kitaoka, M., et al. ‘Effect of C-6 methylol groups on substrate recognition of glucose/xylose mixed oligosaccharides by cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporiumJ. Appl. Glycosci. 67: 51-57 (2020)
  23. de Ruijter, J. C., Igarashi, K., and Penttilä, M., ‘The Lipomyces starkeyi gene Ls120451 encodes a cellobiose transporter that enables cellobiose fermentation in Saccharomyces cerevisiaeFEMS Yeast Res. foaa019, https://doi.org/10.1093/femsyr/foaa019 (2020)
  24. Tsutsui, S., Sakuragi, K., Igarashi, K., et al. ‘Evaluation of ammonia pretreatment for enzymatic hydrolysis of sugarcane bagasse to recover xylooligosaccharides’ J. Appl. Glycosci. 67: 17-22 (2020)
  25. Takeda, K., Ishida, T., Yoshida, M., et al. ‘The Crystal Structure of the catalytic domain and the cytochrome b domain in a eukaryotic PQQ-dependent dehydrogenase’ Appl. Environ. Microbiol. 85: e01692-19 (2019)
  26. Ezaki, T., Nishinari, K., Samejima, M., et al. ‘Bridging the Micro-Macro Gap between Single-Molecular Behavior and Bulk Hydrolysis Properties of Cellulase’ Phys. Rev. Lett. 122, 9, 5 p., 098102 (2019)
  27. Kumakura, K., Hori, C., Matsuoka, H., et al. ‘Protein components of water extracts from fruiting bodies of the Reishi mushroom Ganoderma lucidum contribute to the production of functional molecules’ J. Sci. Food Agric. 99(2): 529-535 (2019)
  28. Sakuragi, K., Hori, C., Igarashi, K., et al. ‘Secretome analysis of the basidiomycete Phanerochaete chrysosporium grown on ammonia-treated lignocellulosic biomass from birch wood’ J. Wood Sci. 64(6) 845-853 (2018)
  29. Abe, K., Sunagawa, N., Terada, T., et al. ‘Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocuaJ. Biol. Chem. 293(23):8812-8828 (2018)
  30. Sakuta, R., Takeda, K., Igarashi, K., et al. ‘Enzymes Suitable for Biorefinery to Coproduce Hexaric Acids and Electricity from Hexuronic Acids Derived from Biomass’ Energy Technol. 6(2): 273-279 (2018)
  31. Kato, S., Hayashi, M., Kitagawa, M., et al. ‘Degradation pathway of plant complex-type N-glycans: Identification and characterization of a key α1,3-fucosidase from Glycoside Hydrolase Family 29’ Biochem. J. 475(1): 305-317 (2018) doi: 10.1042/BCJ20170106.
  32. CAZypedia Consortium, Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes, Glycobiology 28(1): 3-8 (2018), doi: 10.1093/glycob/cwx089.
  33. Komiya, D., Hori, A., Ishida, T., Igarashi, K., et al. ‘Crystal structure and substrate specificity modification of acetyl xylan esterase from Aspergillus luchuensisAppl. Environ. Microbiol. 83(20): e01251-17(2017), DOI: 10.1128/AEM.01251-17
  34. Harada, H., Onoda, A., Uchihashi, T., et al. ‘Interdomain flipflop motion visualized in flavocytochrome cellobiose dehydrogenase using highspeed atomic force microscopy during catalysis’ Chem. Sci. 8: 6561-6565 (2017)
  35. Tachioka, M., Nakamura, A., Ishida, T., et al. ‘Crystal structure of family 6 cellobiohydrolase from the basidiomycete Phanerochaete chrysosporiumActa Crysta. F 73: 398-403 (2017)
  36. Shinohara, N., Sunagawa, N., Tamura, S., et al. ‘The plant enzyme AtXTH3 catalyses covalent crosslinking between cellulose and cellooligosaccharide’ Sci. Rep. 7: 46099 (2017)
  37. Yamamoto, Y., Cheng, N., Koda, K., et al. ‘Association of amphipathic lignin derivatives with cellobiohydrolase groups improves enzymatic saccharification of lignocellulosics’ Cellulose 24: 1849-1862 (2017)
  38. Yoshimi, Y., Sugawara, Y., Hori, C., et al. ‘A protease/peptidase from culture medium of Flammulina velutipes that acts on arabinogalactan-protein’ Biosci. Biotechnol. Biochem. 81: 475-481 (2017)
  39. 立岡美夏子、中村彰彦、石田卓也 他 ’水素原子の可視化を目指したセルラーゼの大型結晶作製’ Int. J. Microgravity Sci. Appl. 34(1):340108 (2017)
  40. Sakuta, R., Takeda, K., Igarashi, K., et al. ‘Pyrroloquinoline quinone-dependent glucose dehydrogenase anode: Coproduction of galactaric acid and electricity’ J. Mol. Catal. B Enzym. 133: S76-S79 (2016)
  41. Tachioka, M., Sugimoto, N., Nakamura, A., et al. ‘Development of simple random mutagenesis protocol for the protein expression system in Pichia pastorisBiotechnol. Biofuels 9: 199 (2016)
  42. Nakamura, A., Tasaki, T., Ishiwata, D., et al. ‘Single-molecule Imaging analysis of binding, processive movement, and dissociation of cellobiohydrolase Trichoderma reesei Cel6A and its domains on crystalline cellulose’ J. Biol. Chem. 291: 22404-22413 (2016)
  43. Kojima, Y., Várnai, A., Ishida, T., et al. ‘Characterization of an LPMO from the brown-rot fungus Gloeophyllum trabeum with broad xyloglucan specificity, and its action on cellulose-xyloglucan complexes’ Appl. Environ. Microbiol. 82: 6557-6572 (2016) 
  44. 高畠幸司、五十嵐圭日子、鮫島正浩 ‘多糖分解酵素添加がヤマブシタケ,ナメコ菌床栽培に与える影響’ 日本きのこ学会誌 24: 121-128(2016)
  45. Takeda, K., Matsumura, H., Ishida, T., et al. ‘pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase’ Biochem. Biophys. Res. Commun. 477: 369-373 (2016)
  46. Nakamura, A., Ishida, T., Kusaka, K., et al. “Newton’s cradle” proton relay with amide-imidic acid tautomerization in inverting cellulase visualized by neutron crystallography’ Science Adv. 1: e1500263 (2015)
  47. 和田朋子、中田裕治、ディレック ドグ他 ’変性剤濃度勾配ゲル電気泳動法を用いた、トルコ・イェニカプ遺跡から発掘された新石器時代の出土樹木中に存在する微生物群の菌叢解析’保存科学Science for conservation (54), 171-183, (2015)
  48. Sakuta, R., Takeda, K., Ishida, T., et al. ‘Multi-enzyme anode composed of FAD-dependent and NAD-dependent enzymes with a single ruthenium polymer mediator for biofuel cells’ Electrochem. Commun. 56: 75-78 (2015)
  49. Takeda, K., Uchihashi, T., Watanabe, H., et al. ‘Real-Time Dynamic adsorption processes of cytochrome c on an electrode observed through electrochemical high-speed atomic force microscopy’ PLoS One 10: e0116685 (2015)
  50. Umezawa, K., Takeda, K., Ishida, T., et al. ‘A novel pyrroloquinoline quinone-dependent 2-keto-D-glucose dehydrogenase from Pseudomonas aureofaciensJ. Bacteriol. 197: 1322-1329 (2015)
  51. Takeda, K., Matsumura, H., Ishida, T., et al. ‘Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in Carbohydrate-Active Enzymes’ PLoS One 10: e0115722 (2015)
  52. Hori, C., Ishida, T., Igarashi, K., et al. ‘Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood’ PLoS Genetics 10: e1004759 (2014)
  53. Tsukagoshi, H., Nakamura, A., Ishida, T., et al. ‘The GH26 β-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: heterologous expression and characterization’ Biochem. Biophys. Res. Commun. 452: 520-525 (2014)
  54. Matsumura, H., Umezawa, K., Takeda, K., et al. ‘Discovery of a eukaryotic pyrroloquinoline quinone-dependent oxidoreductase belonging to a new auxiliary activity family in the database of carbohydrate-active enzymes’ PLoS One 9: e104851 (2014)
  55. Suzuki, K., Hori, A., Thangudu, R. R., et al. ‘Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond connects the serine and histidine residues in a catalytic triad’ Proteins 82: 2857–2867 (2014)
  56. Igarashi, K., Uchihashi, T., Uchiyama, T., et al. ‘Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin’ Nature Commun. 5: 3975 (2014)
  57. 黒澤美幸、古久保美樹、五十嵐圭日子他 鮫島正浩 ’セルロース系バイオエタノール生産における酵素コスト削減に向けた指針’ 日本エネルギー学会誌 93: 964-972(2014)
  58. Srimongkon, T., Ishida, T., Igarashi, K., et al. ‘Development of a bacterial culture system using a paper platform to accommodate media and an ink-jet printing to dispense bacteria’ Am. J. Biochem. Biotechnol. 10: 81-87 (2014)
  59. Shibafuji, Y., Nakamura, A., Uchihashi, T., et al. ‘Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIIIJ. Biol. Chem. 289: 14056-14065 (2014)
  60. Nakamura, A., Watanabe, H., Ishida, T., et al. ‘Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose’ J. Amer. Chem. Soc. 136: 4584–4592 (2014)
  61. Takeda, K., Ishida, T., Samejima, M., et al. ‘Effect of amines as activators on the alcohol-oxidizing activity of pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenase’ Biosci. Biotechnol. Biochem. 78: 1195–1198 (2014)
  62. Tsukagoshi, H., Nakamura, A., Ishida, T., et al. ‘Structural and biochemical analyses of glycoside hydrolase family 26 β-mannanase from a symbiotic protist of the termite Reticulitermes speratusJ. Biol. Chem. 289: 10843-10852 (2014)
  63. 熊倉慧、小澤好夫、五十嵐圭日子他 ’マンネンタケ子実体の水抽出物に含まれるアンギオテンシン変換酵素阻害成分’ 日本きのこ学会誌 22: 11-18(2014)
  64. Hori, C., Gaskell, J., Igarashi, K., et al. ‘Temporal alterations in secretome of selective ligninolytic fungi Ceriporiopsis subvermispora during growth on aspen wood reveal its strategy of degrading lignocellulose’ Appl. Environ. Microbiol. 80: 2062-2070 (2014)
  65. 和田朋子、中田裕治、吉田 誠他 ’腐朽した土台材中に存在する菌類の菌叢解析’ 木材保存 39: 280-290(2013)
  66. 和田朋子、五十嵐圭日子、藤原裕子他 ’柿葺き屋根材中に存在する菌類の菌叢解析’ 保存科学 53: 45-53、図巻頭2p(2013)
  67. Nihira T., Saito Y., Nishimoto M., et al. ‘Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi’ FEBS Lett. 587: 3556-3561 (2013)
  68. Takeda, K., Matsumura, H., Ishida, T., et al. ‘The two-step electrochemical oxidation of alcohols using a novel recombinant PQQ alcohol dehydrogenase as a catalyst for a bioanode’ Bioelectrochemistry 94: 75-78 (2013)
  69. Hori, C., Gaskell, J., Igarashi, K., et al. ‘Genome-wide analysis of polysaccharides degrading enzymes in eleven white- and brown-rot Polyporales provides insight into mechanisms of wood decay’ Mycologia 105: 1412-1427 (2013)
  70. Nakamura, A., Ishida, T., Fushinobu, S., et al. ‘Phase diagram-guided method for growth of a large crystal of glycoside hydrolase family 45 inverting cellulase suitable for neutron structural analysis’ J. Sync. Rad. 20: 859-863 (2013)
  71. Fukuda, S., Uchihashi, T., Iino, R., et al. ‘High-speed atomic force microscope combined with single-molecule fluorescence microscope’ Rev. Sci. Instr. 84: 073706 (2013)
  72. Nakamura, A., Tsukada, T., Auer, S., et al. ‘Tryptophan residue at active-site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important to initiate degradation of crystalline cellulose’ J. Biol. Chem. 288: 13503-13510 (2013)
  73. Wu, M., Beckham, G. T., Larsson, A. A., Ishida, T., Kim, S., et al. ‘Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the basidiomycota fungus Phanerochaete chrysosporiumJ. Biol. Chem. 288: 12828-12839 (2013)
  74. Iizuka, R., Toshimitsu, I., Tahara, K., et al. ‘Probing single-molecule enzymatic dynamics of β-glucosidase using zero-mode waveguides’ Biophys. J. 104: 178 (2013)
  75. Winarni, I., Oikawa, C., Yamada, T., et al. ‘Improvement of enzymatic saccharification of unbleached cedar pulp with amphipathic lignin derivatives’ BioResources 8: 2195-2208 (2013)
  76. 貴田啓子、早川典子、佐藤嘉則 他 ’壁画修復に用いる接着材料の分子量および強度の変化に及ぼす酵素の影響’ 保存科学 52号 11-26頁 (2013)
  77. Igarashi, K. and Samejima, M., ‘Single amino acid mutation around flavin cofactor changes pH-dependence of basidiomycete class I cellobiose dehydrogenase activity’ J. Appl. Glycosci. 60: 111-116 (2013)
  78. Ortiz, R., Matsumura, H., Tasca, F., et al. ‘Deglycosylation of cellobiose dehydrogenases enhances direct electron transfer with electrodes’ Anal Chem. 84: 10315-10323 (2012)
  79. Suzuki, H., MacDonald, J., Syed, K., et al. ‘Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize’ BMC Genomics 13: 444 (2012)
  80. Sugimoto, N., Igarashi, K., Wada, M., et al. ‘Adsorption characteristics of fungal family 1 cellulose-binding domain from Trichoderma reesei cellobiohydrolase I on crystalline cellulose: Negative cooperative adsorption via a steric exclusion effect’ Langmuir 28: 14323-14329 (2012)
  81. Matsumura, H., Ortiz, R., Ludwig, R., et al. ‘Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes’ Langmuir 28: 10925-10933 (2012)
  82. Floudas, D., Binder, M., Riley, R., et al. ‘The Paleozoic origin of enzymatic mechanisms for decay of lignin reconstructed using 31 fungal genomes’ Science 336: 1715-1719 (2012)
  83. Igarashi, K., Maruyama, M., Nakamura, A., et al. ‘Degradation of crystalline celluloses by Phanerochaete chrysosporium cellobiohydrolase II (Cel6A) heterologously expressed in methylotrophic yeast Pichia pastorisJ. Appl. Glycosci. 59: 105-110 (2012)
  84. Hori, C., Suzuki, H., Igarashi, K., et al. ‘Transcriptional response of cellobiose dehydrogenase gene to cello- and xylooligosaccharides in the basidiomycete Phanerochaete chrysosporiumAppl. Environ. Microbiol. 78: 3770-3773 (2012)
  85. 東嶋健太、和田朋子、五十嵐圭日子 他 ’東日本大震災における津波被災紙中に存在する糸状菌の同定’ 紙パルプ技術協会誌 66巻9号 57-74頁 (2012)
  86. Fernandez-Fueyo, E., Ruiz-Duenas, F. J., Ferreira, P., et al. ‘Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis’ Proc. Nat. Acad. Sci. U.S.A. 109: 5458-5463 (2012)
  87. Sugimoto, N., Igarashi, K., and Samejima, M., ‘Cellulose affinity purification of fusion proteins tagged with fungal family 1 cellulose-binding domain’ Prot. Expres. Purif. 82: 290-296 (2012)
  88. Higashijima, K., Hori, C., Igarashi, K., et al. ‘First aid for flood-damaged paper using saltwater: The inhibiting effect of saltwater on mold growth’ Stud. Conserv. 57: 164-171(2012)
  89. Yakovleva, M., Buzas, O., Matsumura, H., et al. ‘A novel combined thermometric and amperometric biosensor for lactose determination based on immobilised cellobiose dehydrogenase’ Bioscens. Bioelectron. 31: 251-256 (2012)
  90. Westereng, B., Ishida, T., Vaaje-Kolstad, G., et al. ‘The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose’ PLoS One 6: e27807 (2011)
  91. Igarashi, K., Uchihashi, T., Koivula, A., et al. ‘Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface’ Science 333: 1279-1282 (2011)
  92. Kotake, T., Hirata, N., Degi, Y., et al. ‘Endo-β-1,3-galactanase from winter mushroom Flammulina velutipesJ. Biol. Chem. 286: 27848-27854 (2011)
  93. Fujita, K., Nakamura, N., Murata, K., et al. ‘Electrochemical analysis of electrode-immobilized dehydrogenases in hydrated choline dihydrogen phosphate-type ionic liquid’ Electrochim. Acta 56: 7224-7227 (2011)
  94. Hori, C., Igarashi, K., Katayama, A., et al. ‘Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose’ FEMS Microbiol. Lett. 321: 14-23 (2011)
  95. Tokuda, N., Igarashi, K., Shimamura, T., et al. ‘Cloning, expression and purification of the anion exchanger 1 homolog from the basidiomycete Phanerochaete chrysosporiumProt. Expres. Purif. 79: 81-87 (2011)
  96. Egusa, S., Kitaoka, T., Igarashi, K., et al. ‘Preparation and enzymatic behavior of surfactant-enveloped enzymes for glycosynthesis in nonaqueous aprotic media’ J. Mol. Cat. B, 67:225-230 (2010)
  97. Takata, R., Tokita, K., Mori, S., et al. ‘Degradation of carbohydrate moieties of arabinogalactan-proteins by glycoside hydrolases from Neurospora crassaCarbohydr. Res. 345:2516-2522 (2010)
  98. 石黒真希、堀 友宣、吉田 誠 他 ’セルロース培養系においてエノキタケが生産する糖質加水分解酵素ファミリー7セロビオヒドロラーゼの解析’ 木材学会誌 56巻6号397-404(2010)
  99. 石黒真希、堀千明、片山映 他 ’エノキタケのトランスクリプトーム配列情報を用いた全分泌タンパク質解析’ 木材学会誌 56巻6号388-396(2010)
  100. Suzuki, H., Igarashi, K., and Samejima, M., ‘Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporiumAppl. Environ. Microbiol. 76:6164-6170 (2010)
  101. 和田朋子、五十嵐圭日子、鮫島正浩 ’腐朽木材中における担子菌叢の定量的評価を目指したDNA増幅法’ 木材保存 36巻5号 200-207頁(2010)
  102. Ishiguro, M., Hori, T., Ishida, T., et al. ‘Molecular cloning of cDNAs encoding two glycoside hydrolase family 7 cellobiohydrolases from the basidiomycete Flammulina velutipesPlant Biotechnol. 27:273-281 (2010)
  103. Tonozuka, T., Yoshida, M., Igarashi, K., et al. ‘Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by Coprinopsis cinereaFEBS J. 277:1532-1542 (2010)
  104. Vasur, J., Kawai, R., Jonsson, K. H. M., et al. ‘Synthesis of cyclic-β-glucan using Laminarinase 16A glycosynthase mutant from the basidiomycete Phanerochaete chrysosporiumJ. Amer. Chem. Soc. 132:1724-1730 (2010)
  105. 熊倉慧、五十嵐圭日子、江口文陽 他 ’マンネンタケ菌株と培地基材が子実体形成とアンギオテンシンⅠ転換酵素阻害活性に与える影響’ 日本きのこ学会誌 17巻4号 161-165頁(2009)
  106. Igarashi, K., Koivula, A., Wada, M., et al. ‘High-speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose’ J. Biol. Chem. 284:36186-36190 (2009)
  107. Hiraishi, M., Igarashi, K., Kimura, S., et al. ‘Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase’ Carbohydr. Res. 344:2468-2473 (2009)
  108. Ishida, T., Fujimoto, Z., Ichinose, H., et al. ‘Crystallization of selenomethionyl exo-β-1,3-galactanase from the basidiomycete Phanerochaete chrysosporiumActa Crysta. F 65:1274-1276 (2009)
  109. Suzuki, H., Igarashi, K., and Samejima, M., ‘Quantitative transcriptional analysis of the genes encoding glycoside hydrolase family 7 cellulase isozymes in the basidiomycete Phanerochaete chrysosporiumFEMS Microbiol. Lett. 299:159-165 (2009)
  110. Kajisa, T., Igarashi, K., and Samejima, M., ‘The genes encoding glycoside hydrolase family 6 and 7 cellulases from the brown-rot fungus Coniophora puteanaJ. Wood Sci. 55:376-380 (2009)
  111. Liu, Y., Igarashi, K., Kaneko, S., et al. ‘Characterization of Glycoside Hydrolase Family 6 Enzymes from Coprinopsis cinereaBiosci. Biotechnol. Biochem. 73:1432-1434 (2009)
  112. Vasur, J., Kawai, R., Andersson, E., et al. ‘X-ray crystal structures of Phanerochaete chrysosporium Laminarinase 16A in complex with products from lichenin and laminarin hydrolysis’ FEBS J. 276:3858-3869 (2009)
  113. Konno, N., Ishida, T., Igarashi, K., et al. ‘Crystal structure of polysaccharide lyase family 20 endo-β-1,4-glucuronan lyase from the filamentous fungus Trichoderma reeseiFEBS Lett. 583:1323-1326 (2009)
  114. Ishida, T., Fuhinobu, S., Kawai, R., et al. ‘Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporiumJ. Biol. Chem. 284:10100-10109 (2009)
  115. 和田朋子、加治佐平、田中計実 他 ’非特異的DNA増幅法を利用した腐朽木材中に存在する担子菌類の同定’ 木材保存 35巻2号 57-65頁(2009)
  116. Fujita, K., Nakamura, N., Igarashi, K., et al. ‘Hydrated ionic liquid: choline dihydrogen phosphate as a biocatalysis medium of cellobiose dehydrogenase’ Green Chem. 11: 351-354 (2009)
  117. Konno, N., Igarashi, K., Habu, N., et al. ‘Cloning of cDNA encoding glucuronan lyase belonging to a novel polysaccharide lyase family from Trichoderma reesei ‘ Appl. Environ. Microbiol. 75:101-107 (2009)
  118. 高畠幸司、五十嵐圭日子、鮫島正浩 ’ヤマブシタケ菌床栽培における廃菌床のリサイクル利用’ 木材学会誌 54巻6号 327-332頁(2008)
  119. Igarashi, K., Ishida, T., Hori, C., et al. ‘Characterization of endoglucanase belonging to new subfamily of glycoside hydrolase family 45 from the basidiomycete Phanerochaete chrysosporium ‘ Appl. Environ. Microbiol. 74:5628-5634 (2008)
  120. Suzuki, H., Igarashi, K., and Samejima, M., ‘Real-time quantitative analysis of carbon catabolite derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium ‘ Appl. Microbiol. Biotechnol. 80:99-106 (2008) 
  121. Konishi, T., Kotake, T., Soraya, D., et al. ‘Properties of family 79 β-glucuronidases that hydrolyze β-glucuronosyl and 4-O-methyl-β-glucuronosyl residues of arabinogalactan-protein, Carbohydr. Res. 343:1191-1201 (2008)
  122. Tsukada, T., Igarashi, K., Fushinobu, S., et al. ‘Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 β-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporiumBiotechnol. Bioeng. 99:1295-1302 (2008)
  123. Ishida, T., Yaoi, K., Hiyoshi, A., et al. ‘Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporiumFEBS J. 274:5727-5736 (2007)
  124. Igarashi, K., Wada, M., and Samejima, M., ‘Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase’ FEBS J. 274:1785-1792 (2007)
  125. Asai, R., Nishino, T., Matsumura, T., et al. ‘Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase’ J. Biochem.141:525-534 (2007)
  126. Nijikken, Y., Tsukada, T., Igarashi, K., et al. ‘Crystal structure of intracellular family 1 β-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium ‘ FEBS Lett. 581:1514-1520 (2007)
  127. Vasur, J., Kawai, R., Larsson, A. M., et al. ‘X-ray crystallographic native sulfur SAD structure determination of laminarinase Lam16A from Phanerochaete chrysosporiumActa Crysta. D 62:1422-1429 (2006)
  128. Tsukada, T., Igarashi, K., Yoshida, M., et al. ‘Molecular cloning and characterization of two intracellular β-glucosidases belonging to GH family 1 from the basidiomycete Phanerochaete chrysosporium ‘ Appl. Microbiol. Biotechnol. 73:807-814 (2006)
  129. Igarashi, K., Wada, M., Hori, R., et al. ‘Surface density of cellobiohydrolase on crystalline celluloses: A critical kinetic parameter to evaluate enzymatic kinetics at a solid-liquid interface’ FEBS J. 273:2869-2878 (2006)
  130. Yoon J. J., Igarashi, K., Kajisa, T., et al. ‘Purification, identification and molecular cloning of glycoside hydrolase family 15 glucoamylase from the brown-rot basidiomycete Fomitopsis palustrisFEMS Microbiol. Lett. 259:288-294 (2006)
  131. Kotake, T., Tsuchiya, K., Aohara, T., et al. ‘An α-L-arabinofuranosidase/β-D-xylosidase from immature seeds of radish (Raphanus sativus L.)’ J. Exp. Botany 57:2353-2362 (2006)
  132. Kawai, R., Igarashi, K., and Samejima, M., ‘Cloning and heterologous expression of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporiumBiotechnol. Lett. 28:365-371(2006)
  133. Kawai, R., Igarashi, K., Yoshida, M., et al. ‘Hydrolysis of β-1,3/1,6/-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporiumAppl. Microbiol. Biotechnol. 71:898-906 (2006)
  134. Ichinose, H., Yoshida, M., Kotake, T., et al. ‘An exo-β-1,3-galactanase having a novel β-1,3-galactan-binding module from Phanerochaete chrysosporiumJ. Biol. Chem. 280:25820-25829 (2005)
  135. Igarashi, K., Yoshida, M., Matsumura, H., et al. ‘Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporiumFEBS J. 272:2869-2877 (2005).
  136. Kotake, T., Dina, S., Konishi, T., et al. ‘Molecular cloning of aβ-galactosidase from radish that specifically hydrolyzes β-(1->3)- and β-(1->6)-galactosyl residues of arabinogalactan protein’ Plant Physiol. 138:1563-1576 (2005)
  137. Yoshida, M., Igarashi, K., Wada, M., et al. ‘Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium: Evidence of novel redox networks in filamentous fungi’ Appl. Environ. Microbiol. 71:4548-4555 (2005)
  138. Kawai, R., Igarashi, K., Ishii, T., et al. ‘Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan 1,3-β-glucosidase from the white-rot fungus Phanerochaete chrysosporiumCarbohydr. Res. 339:2851-2857 (2004)
  139. Leimkuhler, S., Stockert, A. L., Igarashi, K., et al. ‘The role of active site glutamate residues in catalysis of Rhodobacter capsulatus xanthine dehydrogenase’ J. Biol. Chem. 279:40437-40444 (2004)
  140. Kajisa, T., Yoshida, M., Igarashi, K., et al. ‘Characterization and molecular cloning of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteanaJ. Biosci. Bioeng. 98:57-63 (2004)
  141. Yoshida, M., Igarashi, K., Kawai, R., et al. ‘Differential transcription of β-glucosidase and cellobiose dehydrogenase genes in cellulose degradation by the basidiomycete Phanerochaete chrysosporiumFEMS Microb. Lett. 235:177-182 (2004)
  142. Igarashi, K., Tani, T., Kawai, R., et al. ‘Family 3 β-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-β-glucosidase’ J. Biosci. Bioeng. 95:572-576 (2003)
  143. Kawai, R., Yoshida, M., Tani, T., et al. ‘Production and characterization of recombinant Phanerochaete chrysosporium β-glucosidase in the methylotrophic yeast Pichia pastorisBiosci. Biotechnol. Biochem. 67:1-7 (2003)
  144. Yoshida, M., Ohira, T., Igarashi, K., et al. ‘Molecular cloning and characterization of a cDNA encoding cellobiose dehydrogenase from the wood-rotting fungus Grifola frondosaFEMS Microb. Lett. 217:225-230 (2002)
  145. Igarashi, K., Momohara, I., Nishino, T., et al. ‘Kinetics of inter-domain electron transfer in flavocytochrome cellobiose dehydrogenase from the white-rot fungus Phanerochaete chrysosporiumBiochem. J. 365:521-526 (2002)
  146. Yoshida, M., Ohira, T., Igarashi, K., et al. ‘Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastorisBiosci. Biotechnol. Biochem. 65:2050-2057 (2001)
  147. Shibutani, S., Igarashi, K., Samejima, M., et al. ‘Inhibition of Trichoderma cellulase activity by a stilbene glucoside from Picea glehnii bark’ J. Wood Sci. 47:135-140 (2001)
  148. Igarashi, K., Verhagen M. F. J. M., Samejima, M., et al. ‘Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens: A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor’ J. Biol. Chem. 274:3338-3344 (1999)
  149. Imai, T., Boisset, C., Samejima, M., et al. ‘Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals’ FEBS Lett. 432:113-116 (1998)
  150. Igarashi, K., Samejima, M., and Eriksson, K.-E. L., ‘Cellobiose dehydrogenase enhances Phanerochaete chrysosporium cellobiohydrolase I activity by relieving product inhibition’ Eur. J. Biochem. 253:101-106 (1998)
  151. Samejima, M., Sugiyama, J., Igarashi, K., et al. ‘Enzymatic hydrolysis of bacterial cellulose’ Carbohydr. Res. 305:281-288 (1998)
  152. Habu, N., Igarashi, K., Samejima, M., et al. ‘Enhanced production of cellobiose dehydrogenase in cultures of Phanerochaete chrysosporium supplemented with bovine calf serum’ Biotechnol. Appl. Biochem. 26:97-102 (1997)
  153. Igarashi, K., Samejima, M., Saburi, Y., et al. ‘Localization of cellobiose dehydrogenase in cellulose-grown cultures of Phanerochaete chrysosporiumFungal Genet. Biol. 21:214-22 (1997)
  154. Samejima, M., Ohkubo, T., Igarashi, K., et al. ‘The behaviour of Phanerochaete chrysosporium cellobiose dehydrogenase on adsorption to crystalline and amorphous celluloses’ Biotechnol. Appl. Biochem. 25:135-141 (1997)
  155. 石川敦子、和田昌久、五十嵐圭日子 他 ’セルラーゼ処理のラミー繊維引っ張り特性への影響’ 木材学会誌 43巻4号337-341 (1997)

総説・その他

  1. Takeda, K., Yoshida, M., Igarashi, K., et al. ‘Discovery of a novel quinohemoprotein from a eukaryote and its application in electrochemical devices’ Bioelectrochemistry (in press) doi: 10.1016/j.bioelechem.2019.107372
  2. Takeda, K., Umezawa, K., Várnai, A., et al. ‘Fungal PQQ-dependent dehydrogenases and their potential in biocatalysis’ Curr. Opin. Chem. Biol. 49: 113-121 (2019) Doi: 10.1016/j.cbpa.2018.12.001
  3. 堀千明、吉田誠、五十嵐圭日子、鮫島 正浩「ゲノム情報解析で明らかとなった多様な木材腐朽菌の起源と進化」木材学会誌 65巻4号173-188頁(2019)
  4. 五十嵐圭日子、立岡美夏子「セルラーゼの中性子構造解析で明らかにするタンパク質における互変異の重要性」放射光 32巻2号59-66頁(2019)
  5. 藤島義之、五十嵐圭日子「ヨーロッパのバイオエコノミーはどこから来たのか?」アグリバイオ3巻1号33−36頁(2019)
  6. 五十嵐圭日子「バイオエコノミートランスフォーメーション-持続可能社会を真に実現するためのアプローチ-」バイオプラジャーナル 18巻10-14頁(2018)
  7. 五十嵐圭日子「未利用バイオマス有効活用のための結晶性セルロースとセルラーゼの相互作用解析」旭硝子財団助成研究成果報告 Reports of research assisted by the Asahi Glass Foundation, 1-5(2018)
  8. 五十嵐圭日子「バイオマスを利用して地球を守る」横河技報 61巻2号33-34頁(2018)
  9. 五十嵐圭日子「中性子で解き直し」四季 41巻1頁(2018)
  10. 高橋伸一郎、五十嵐圭日子、深尾友美 他「教育を起点に産官学で取り組むSDGs達成の試み「One Earth Guardians育成プログラム」」バイオサイエンスとインダストリー 76巻4号338-341頁(2018)
  11. バイオマスの科学と技術
  12. 五十嵐圭日子「欧州におけるバイオエコノミーの実現に向けた取り組み」アグリバイオ1巻12号1228-1232頁(2017)
  13. 五十嵐圭日子「バイオエコノミーによるゲームチェンジを私たちはどう受けるか:欧州の動向に対する一考察」バイオサイエンスとインダストリー75巻4号344−348頁(2017)
  14. 砂川直輝、田島健次、鮫島正浩 他「天然におけるセルロース合成機構の解明を目指したセルロース合成酵素の異宿主発現とin vitroセルロース合成の試み」高分子学会誌(2017)
  15. 五十嵐圭日子「結晶性セルロースの酵素分解を分子レベルで可視化する」Plant Morphology 29巻1号9-13(2017)
  16. 五十嵐圭日子「セルロース分解に関わる酵素の分子メカニズムの解析」科研費ニュース 2016年度3巻: 15(2016)
  17. 砂川直輝、鮫島正浩、五十嵐圭日子「メタノール資化性酵母Pichia pastoris を用いたセルロース合成酵素の発現」Cellulose Communications 23巻 130-134(2016)
  18. Nakamura, A., Ishida, T., Samejima, M., and Igarashi, K., The use of neutron scattering to determine the functional structure of glycoside hydrolase, Curr. Opin. Struct. Biol. 40: 54-61. (2016) doi: 10.1016/j.sbi.2016.07.014
  19. 中村彰彦、石田卓也、鮫島正浩 他「中性子構造解析で明らかになった立体反転型セルラーゼのユニークな活性残基」バイオサイエンスとインダストリー 74巻3号 231-233頁(2016)
  20. 中村彰彦、石田卓也、日下勝弘 他「中性子/X線結晶構造解析による反転型セルロース加水分解酵素のプロトン伝達経路を含んだ反応機構解明」波紋 26: 139-142(2016)
  21. 中村彰彦、石田卓也、日下勝弘 他「中性子/X線複合構造解析で酵素触媒反応におけるプロトンリレーを可視化する」生物物理 56巻3号 381-388(2016)
  22. 五十嵐圭日子「バイオマスリファイナリーのためのセルロース分解酵素のメカニズム解析温故知新」木材学会誌 61巻3号212-216(2015)
  23. 石田卓也、五十嵐圭日子、鮫島正浩「セルロースの生分解に関わる新規酵素、溶解性多糖モノオキシゲナーゼ」Cellulose Communications 22(3), 137-142, 2015
  24. 堀千明、五十嵐圭日子、鮫島正浩「木材腐朽担子菌のゲノム・ポストゲノム解析から植物細胞壁と分解酵素の共進化を考える」化学と生物 53巻6号 381-388(2015)
  25. 中村彰彦、石田卓也、鮫島正浩 他「反転型セルラーゼの巨大結晶作製と中性子/X線共構造解析」 日本結晶学会誌 57巻1号 59-65(2015)
  26. 杉本華幸、五十嵐圭日子、内橋 貴之 他 キチナーゼによる結晶性キチンのプロセッシブ(連続的)な分解機構の解明 応用糖質科学 4: 107-112(2014)
  27. 五十嵐圭日子 セルロース生分解に関わる加水分解酵素および酸化還元酵素における反応機構の解析 応用糖質科学 第4巻1号23-31頁(2014)
  28. 飯野亮太、中村彰彦、五十嵐圭日子 他 「1分子計測からわかるエクソ型セルラーゼの分子機構」生物物理 54巻6号 318-320(2014)
  29. 五十嵐圭日子、鮫島正浩 単分子観察によって明らかにされた結晶性セルロース加水分解過程におけるセロビオヒドロラーゼの実力 化学と生物 52巻4号158-162頁(2014)
  30. Igarashi, K., Cooperative biomass breakdown, Nature Chem. Biol. 9: 350-351 (2013)
  31. 五十嵐圭日子,内橋貴之,鮫島正浩 他 高速原子間力顕微鏡による結晶性セルロース酵素分解のリアルタイム一分子イメージング 生物物理 53巻3号 140-144(2013)
  32. 五十嵐圭日子 バイオマス高度利用のための酵素の役割と今後の展望 応用糖質科学 第3巻 第1号 19-23頁(2013)
  33. 五十嵐圭日子 セルロース酵素分解の最新情報 応用糖質科学 第2巻 第4号 234-235頁(2012)
  34. 堀千明,五十嵐圭日子,鮫島正浩 バイオリファイナリー技術の発展を目指した木材腐朽菌のゲノムワイド/ポストゲノム解析 Cellulose Communications 19巻4号 189-194頁(2012)
  35. 五十嵐圭日子 結晶性セルロースを壊す分子戦略:セロビオヒドロラーゼの反応メカニズム Cellulose Communications 19巻2号 63-68頁(2012)
  36. 藤沼晶子、丸屋良輔、杉本華幸 他 Serratia marcescensキチナーゼBの特徴と結晶性キチン分解機構 キチン・キトサン研究 第18巻 第2号 148-149頁(2012)
  37. 五十嵐圭日子 結晶性セルロース酵素分解機構の完全理解を目指して バイオプラジャーナル 45巻 14−19頁(2012)
  38. 五十嵐圭日子,内橋貴之,安藤敏夫,鮫島正浩 セルロース表面におけるセルラーゼの交通渋滞が
加水分解効率を低下させる 細胞工学 31号2巻198−199頁(2012)
  39. 五十嵐圭日子 微生物を用いた細胞壁の分解と利用 遺伝 66巻 65-71頁(2012)
  40. 五十嵐圭日子 高速原子間力顕微鏡によるセルラーゼ分子の可視化 バイオエタノール通信 6巻 21-26頁(2011)
  41. 鮫島正浩、五十嵐圭日子 セロビオース脱水素酵素ーその機能と応用 日本きのこ学会誌 18巻3号87-93頁(2010)
  42. 五十嵐圭日子、鮫島正浩 結晶性セルロースはどのようにして酵素分解されるのか バイオサイエンスとインダストリー 68巻 312-313頁(2010)
  43. 五十嵐圭日子、鮫島正浩 セルラーゼはなぜ遅いのかー糸状菌が生産するセロビオヒドロラーゼの比較から結晶性セルロース分解における律速段階を考える 化学と生物 47巻5号323ー328頁(2009)
  44. Igarashi, K., Wada, M., and Samejima, M. Kinetic analysis of cellobiohydrolase: Quantification of enzymatic reaction at a solid/liquid interface applying the concept of surface density Trends in Glycoscience and Glycotechnology 21巻117号 13-22頁(2009)
  45. 五十嵐圭日子、和田昌久、鮫島正浩 セルラーゼによる高結晶性セルロースの分解-セルラーゼのバリエーションと結晶変換の影響- Cellulose Communications 15巻4号 164-167頁(2008)
  46. 五十嵐圭日子、和田昌久、鮫島正浩 セルロース系バイオマスの有効利用に向けたセルラーゼの反応メカニズム解析 バイオプラジャーナル 30号 16-21頁(2008)
  47. 五十嵐圭日子、和田昌久、鮫島正浩 固液界面における酵素反応の速度論的解析:セロビオヒドロラーゼによる結晶性セルロースの分解 Cellulose Communications 13巻4号 173-177頁(2006)
  48. 五十嵐圭日子、鮫島正浩 セロビオース脱水素酵素を介した糸状菌細胞外電子伝達系 バイオサイエンスとインダストリー 63巻 777-780頁(2005)
  49. 鮫島正浩、五十嵐圭日子 糸状菌によるセルロース生分解機構とその関連酵素をとりまく最近の研究動向 木材学会誌 50巻6号 1-9頁 (2004)
  50. 鮫島正浩、五十嵐圭日子 酸化還元反応が関与する白色木材腐朽菌のセルロース分解機構 化学と生物 41巻1号 22-26頁 (2003)
  51. 五十嵐圭日子、鮫島正浩 セロビオース脱水素酵素とセルロース生分解におけるその機能 Cellulose Communications 4巻2号 56-60頁 (1997)

著書

  1. Sunagawa, N. and Igarashi, K., ‘Expression of recombinant fungal proteins in Pichia pastorisEncyclopedia of Mycology 2: 518-527 (2021) https://doi.org/10.1016/B978-0-12-819990-9.00020-2
  2. 五十嵐圭日子「きのこの酵素機能とバイオマス変換技術の可能性」きのこの生理機能と応用開発の展望 115-125頁(2017)
  3. 五十嵐圭日子「きのことカビとバイオマスと―微生物の酵素によるバイオマス利用」科学の最前線を歩く 知のフィールドガイド 130-141頁(2017)
  4. 五十嵐圭日子、鮫島正浩「酵素糖化技術各論:セルロースの高効率酵素糖化に向けたセルラーゼの反応解析」次世代バイオエタノール燃料製造の技術革新と事業展開 140−152頁(2009)
  5. 五十嵐圭日子「キノコの酵素パワーで木材を使い倒す」読売クオータリー 第25巻 96-105頁(2013)
  6. 五十嵐圭日子、鮫島正浩「細胞壁分解にかかわる酵素とそれらの遺伝子」「セルロース、ヘミセルロース、リグニンの分解酵素」菌類の事典 270-274頁 524-526頁(2013)
  7. Igarashi, K., Uchihashi, T., Koivula, A., et al. ‘Visualization of cellobiohydrolase I from Trichoderma reesei moving on crystalline cellulose using high-speed atomic force microscopy’ Methods in Enzymology 510:169-182 (2012)
  8. 五十嵐圭日子、内橋貴之、鮫島正浩、安藤敏夫「高速原子間力顕微鏡によるセルロース分解プロセスの可視化」植物細胞壁実験法 312-322頁(2016)
  9. 五十嵐圭日子「セルロースの分解」「菌類の組換えタンパク質調製」 植物細胞壁 227-229頁 313-314頁(2013)
  10. 五十嵐圭日子、和田昌久、鮫島正浩 セルロースの結晶構造改変に基づく酵素糖化の効率化 セルロース利用技術の最先端 第12章 377-384頁(2008)
  11. 五十嵐圭日子、鮫島正浩 セルロースおよびその誘導体の生分解 生分解性プラスチックの改質技術と成形加工における課題と対策 第3節 38-47頁 (2003)

特許

  1. キチン分解酵素組成物、キチン分解反応液及び糖の製造方法 五十嵐圭日子、内山拓、関口和敏 特願2017-22513/特開2019-092445
  2. 新規セルロース結合性タンパク質 小島由香、砂川直輝、吉田誠、五十嵐圭日子 特願2017-140504/特開2019-017331
  3. 蛋白質の整列方法 小杉昭彦、森隆、五十嵐圭日子 特願2012-068516/特開2013-198427
  4. 酵素糖化用原料の製造方法、糖の製造方法及びエタノールの製造方法 五十嵐圭日子、和田昌久、鮫島正浩、井口靖敏、磯村佳功、丹羽雅裕 特願2011-003292/特開2012-143179 PCT/JP2012/050121
  5. 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法 五十嵐圭日子、鮫島正浩、和田昌久 特願2010-029016/特開2011-160753
  6. バイオマス原料の処理方法、並びに糖の製造方法、エタノールの製造方法、及び乳酸の製造方法 五十嵐圭日子、鮫島正浩 特願2009-146466/特開2011-71
  7. 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用原料の製造方法 鮫島正浩、五十嵐圭日子、和田昌久、上村毅 特願2009-046794/特開2010-200624
  8. エンドグルカナーゼ活性を有する新規タンパク質、そのDNA、及びそれらの利用 五十嵐圭日子、鮫島正浩 特願2008-185219/特開2010-22242 PCT/JP2009/62882
  9. 蛍光染料の分解剤 原園幸一、鮫島正浩、五十嵐圭日子 特願2007-302145 2007年11月21日
  10. 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用セルロース及びその製造方法 和田昌久、五十嵐圭日子、鮫島正浩 特願2006-354706/特開2008-161125
  11. バイオマス原料の処理方法、並びに、これを利用した糖の製造方法及びエタノールの製造方法 五十嵐圭日子、鮫島正浩 特願2006-238693/特開2008-54640
  12. 生物試料の検出方法 五十嵐圭日子、鮫島正浩 特願2006-059113/特開2007-236215 2006年3月6日
  13. エキソ−1,3−ガラクタナーゼ遺伝子、該遺伝子を含むプラスミドベクター及び形質転換体 小林秀行、金子 哲、一ノ瀬仁美、円谷陽一、小竹敬久、鮫島正浩、五十嵐圭日子、吉田 誠 特願2004-059997/特開2005−245303